www.neobiolab.com info@neobiolab.com 888.754.5670, +1 617.500.7103 United States 0800.088.5164, +44 020.8123.1558 United Kingdom ## FMO3 Reactivity: Human Mouse Rat Tested applications: WB IHC IF Recommended Dilution:WB 1:500 - 1:2000 IHC 1:50 - 1:200 IF 1:10 - 1:100 Calculated MW:60kDa Observed MW:Refer to Figures Immunogen: Recombinant protein of human FMO3 Storage Buffer: Store at -20. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide, 50% glycerol, pH7.3. Synonym: TMAU; FMOII; dJ127D3.1 Catalog #:A1901 **Antibody Type:** Polyclonal Antibody Species: Rabbit Gene ID:2328 Isotype:IgG Swiss Prot:P31513 Purity: Affinity purification For research use only. ## Background: Flavin-containing monooxygenases (FMO) are an important class of drug-metabolizing enzymes that catalyze the NADPH-dependent oxygenation of various nitrogen-, sulfur-, and phosphorous-containing xenobiotics such as therapeutic drugs, dietary compounds, pesticides, and other foreign compounds. The human FMO gene family is composed of 5 genes and multiple pseudogenes. FMO members have distinct developmental- and tissue-specific expression patterns. The expression of this FMO3 gene, the major FMO expressed in adult liver, can vary up to 20-fold between individuals. This inter-individual variation in FMO3 expression levels is likely to have significant effects on the rate at which xenobiotics are metabolised and, therefore, is of considerable interest to the pharmaceutical industry. This transmembrane protein localizes to the endoplasmic reticulum of many tissues. Alternative splicing of this gene results in multiple transcript variants encoding the same protein. Mutations in this gene cause the disorder trimethylaminuria (TMAu) which is characterized by the accumulation and excretion of unmetabolized trimethylamine and a distinctive body odor. In healthy individuals, trimethylamine is primarily converted to the non odorous trimethylamine N-oxide. To place an order, please Click HERE.